
MAM: A Memory Allocation Manager for GPUs
Can Aknesil

Computer Science and Engineering
Koç University
Istanbul, Turkey

caknesil13@ku.edu.tr

Didem Unat

Computer Science and Engineering
Koç University

Istanbul, Turkey
dunat@ku.edu.tr

Abstract—Nowadays, GPUs are used in all kinds of com-
puting fields to accelerate computer programs. We observed
that allocating memory on GPUs is much slower than that of
allocating memory on the CPUs. In this study, we focus on
decreasing the device memory allocation overhead of GPUs. The
overhead becomes significantly larger as the size of the memory
segment that is being allocated increases. In order to achieve the
lowest possible overhead during device memory allocations in
GPUs, we develop a thread safe memory management library
called Memory Allocation Manager (MAM) for CUDA. Our
library removes the allocation and the deallocation overheads
occurring during the runtime, and makes the performance of
CUDA programs independent from the device memory allocation
size.

Index Terms—GPU, CUDA, device memory allocation, perfor-
mance improvement.

I. INTRODUCTION

The current trend of computer system is to parallelize the
hardware and the software programs running on it, rather than
producing faster processor cores. With this trend, the usage of
GPUs has been increasing in all areas of computing fields.
Currently, GPUs are used for many purposes such as for
graphics, machine learning, and high performance computing.
Since GPUs are used extensively, it is very important to keep
the performance of programs using GPUs as high as possible.

In this study, we focus on decreasing the device memory
allocation overhead of GPUs. This allocation overhead is large,
especially when the allocation size is large. Thus, applications
requiring repetitive or large allocations may reduce the overall
performance. As our measurements indicate, shown in Figure
1, the overhead associated to device memory allocations
increases almost linearly for allocations larger than 1MB. The
similar result can be observed from a study of a group from
the University of Virginia [2].

We develop a thread safe memory management library,
called Memory Allocation Manager (MAM), in order to re-
move the allocation overhead on GPU memory. Our library
provides an abstraction layer between the programmer and
the memory management module of CUDA [1] environment.
In order to allocate and free memory using MAM, the pro-
grammer should call procedures defined in the MAM API
rather than directly calling the regular cudaMalloc() and
cudaFree() procedures. In this paper, we first introduce
the MAM API, then its implementation. Lastly we present its

Fig. 1. malloc() and cudaMalloc() durations vs allocation size

performance and compare it against regular memory routines
provided by CUDA.

II. APPLICATION PROGRAMMING INTERFACE

MAM API contains five procedures that a programmer can
use for memory management. During the creation of the MAM
environment, a large chunk of memory is allocated by MAM
on the device memory, which will be explained in detail later.

• MAM_Create(maxSize): Creates the MAM environ-
ment. Takes a parameter that defines the size of the chunk
of memory that will allocated during the creation.

• MAM_Create_auto(): Creates the MAM environ-
ment. Allocates the largest possible chunk of memory
during the creation.

• MAM_Destroy(): Destroys the MAM environment.
• MAM_CudaMalloc(&ptr, size): Allocates speci-

fied size of device memory.
• MAM_CudaFree(ptr): Frees the previously allocated

device memory.
MAM can be used in three different ways:
1) By specifying the chunk size during its creation:

MAM Create (maxSize) ;
MAM CudaMalloc(& p t r , s i z e) ;
. . .
MAM CudaFree (p t r) ;

MAM Destroy () ;

2) Without specifying the size of the chunk during its
creation: In this case, the largest possible size is used.
The largest possible size is allocated by performing mul-
tiple allocation operations by decreasing the allocation
size exponentially starting from the size of the device
memory until one of the allocations succeeds. We take
this approach because it is not possible to allocate entire
device memory.

MAM Create auto () ;
MAM CudaMalloc(& p t r , s i z e) ;
. . .
MAM CudaFree (p t r) ;
MAM Destroy () ;

3) Without explicit creation: In this case lazy creation
occurs. MAM_Create_auto() is called automatically
when MAM_CudaMalloc() is first called. When all
the memory allocated using MAM API is freed, MAM
automatically destroys itself.

MAM CudaMalloc(& p t r , s i z e) ;
. . .
MAM CudaFree (p t r) ;

III. IMPLEMENTATION

During the creation of MAM, a large and continuous chunk
of memory is allocated on the device memory. The size of the
chunk is expected to be equal or smaller than the maximum
size of the device memory that will be used by the CUDA
program at a time instance. The pointers to the segments of this
large chunk of memory will be returned by MAM during the
allocation process. Every object existing in MAM environment
other than the chunk live in the host memory.

Fig. 2. An example of the chunk

A chunk is divided into segments that are either being
used or not being used (empty) by the programmer. Figure 2
represents an example of the chunk at a time instance. The
example chunk is a continuous memory and consists of 5
segments.

In the MAM environment, each segment is represented
by a segment struct instance in the host memory.
The segment struct contains mainly, a pointer to the
beginning of the physical segment located in the device
memory, a size attribute, and a flag indicating whether it is
being used by the program or not. The segment struct
declaration is as follows:

s t r u c t segment {
void ∗ b a s e P t r ;
s i z e t s i z e ;
char i sEmpty ;
/∗ a t t r i b u t e s r e l a t e d t o da ta
s t r u c t u r e s ∗ /
. . .

} ;

A. Internal Data Structures

In MAM, there are two data structures that store the
segment struct instances. The first data structure is a
tree that stores all the segments. It is sorted according to the
base pointer of each segment that points to the beginning
of the represented physical memory. It is used when the
programmer calls MAM_CudaFree(*void) in order to find
the corresponding segment using the pointer parameter.

The second data structure is a tree-dictionary that stores
only the empty segments and it is sorted according to their
size attribute. It is used to find an empty segment at an equal
or greater size than the desired allocation size during the
MAM_CudaMalloc(**void, size_t) call. In both data
structures, a red-black tree is used since it is a balanced tree.

Fig. 3. Pointer tree

Figure 3 and Figure 4 show the corresponding data struc-
tures for the example chunk shown in Figure 2. At that
instance, there are 3 segments that are allocated by the user
(Segment 0, 2, and 3), and 2 segments that are not (Segment

Fig. 4. Size tree-dictionary

1, and 4). Figure 3 shows the time instance of the pointer-
tree. It contains all the segments and it is sorted by the base
pointers of each segment. Figure 4 shows the time instance of
the size-tree dictionary that contains all the empty segments.
It is sorted according to the sizes of each segments.

IV. MEMORY MANAGEMENT

Allocation and deallocation calls to MAM API respectively
starts and ends the usage of segments located in the chunk,
which was previously allocated. Since the total physical mem-
ory that will be used is allocated as a large chunk during
the creation of MAM environment, MAM_CudaMalloc()
and MAM_CudaFree() calls do not actually allocate or free
any physical memory but imitate the process. This is the
main reason why MAM introduces much less overhead than
the CUDA memory management module. The initialization
of the MAM environment is slow but the initialization is
performed once at the beginning; once MAM is created, all
the memory management calls are faster. Next, we will discuss
the allocation and deallocation implementations in MAM.

Fig. 5. Allocation diagram 1 Fig. 6. Allocation diagram 2

A. Allocation

When the programmer calls MAM_CudaMalloc(), MAM
searches the smallest empty segment whose size is equal or
greater than the desired segment using the size tree-dictionary.
If there is an empty segment with the same size, MAM
marks it as filled. If the segment that is found is larger then
the desired segment, a new segment that represents the non-
allocated empty part is created. This procedure is illustrated

Algorithm 1 MAM Allocation Algorithm - O(log n)
1: procedure ALLOCATE
2: Find a best-fitting empty segment from the tree-

dictionary O(log n)
3: Mark the segment as filled O(1)
4: if The segment perfectly fits O(1) then
5: Remove segment from tree-dictionary O(log n)
6: else
7: Resize it O(1)
8: Remove it from tree-dictionary O(log n)
9: Create a new empty segment O(1)

10: Insert it in pointer-tree & tree-dictionary O(log n)
11: end if
12: Return the base pointer of filled segment O(1)
13: end procedure

in Figure 5 and Figure 6. In Figure 6, Segment 3 is a newly
created segment.

The algorithm of MAM allocation is shown in Algorithm 1.
The complexities of all steps in the algorithm is shown at the
end of each step. The overall complexity of this allocation
algorithm is O(log n), where n is the number of segments
existing in the chunk.

B. Deallocation

When the programmer calls MAM_CudaFree(), MAM
first marks the segment that is being freed as empty. Then
merges the empty segment with previous and next segments
if they are also empty. This procedure is illustrated in Figure
7.

The algorithm of MAM deallocation is shown in Algo-
rithm 2. The overall completely of the deallocation algorithm
is also O(log n), where n is the number of the segments in
the chunk.

Fig. 7. Deallocation diagram

The allocation and deallocation algorithms are used in the
implementation of MAM API, respectively in the procedures
MAM_CudaMalloc() and MAM_CudaFree(). Thus, the

Algorithm 2 MAM Deallocation Algorithm - O(log n)
1: procedure DEALLOCATE
2: Find the segment in the pointer-tree O(log n)
3: Mark the segment as empty O(1)
4: Get previous and next segments O(log n)
5: if the previous segment is empty O(1) then
6: Remove the segment being newly emptied from

pointer-tree and tree-dictionary O(log n)
7: Destroy the segment being newly emptied O(1)
8: Resize previous segment O(1)
9: Replace it in tree-dictionary O(log n)

10: Assign it to the variable stored the destroyed
segment O(log n)

11: end if
12: //repeat the similar procedure for next segment.
13: end procedure

complexities of both allocation and deallocation are O(log n)
in terms of the number of segments.

V. PERFORMANCE EVALUATION

We demonstrate the performance of MAM in two ways: in
terms of the allocation size, and in terms of the number of
previously allocated segments. We used Tesla K20m as the
GPU testbed, Linux 2.6.32-431.11.2.el6.x86 64 as the kernel
and NVCC 7.0, V7.0.27 as CUDA Compilation Tools in all
of our tests.

In order to measure the performance in terms of allocation
size, we created a histogram that stores the time elapsed
during allocation for different allocation sizes from 1Byte to
1GigaByte. We filled the histogram by allocating the device
memory parts of random sizes over and over again until there
is no more space.

Figure 8 and Figure 9 show the performance comparison be-
tween regular cudaMalloc() and MAM_CudaMalloc(),
and cudaFree() and MAM_CudaFree(), respectively, in
terms of allocation size.

Fig. 8. cudaMalloc() vs MAM_CudaMalloc() comparison

Fig. 9. cudaFree() vs MAM_CudaFree() comparison

As shown in these figures, while allocation duration
of cudaMalloc() increases swiftly, the duration of
MAM_CudaMalloc() stays almost constant. MAM removes
the allocation and deallocation overhead and makes the per-
formance of allocations independent from the allocation size.
This result was expected because MAM moves the entire
physical memory allocation overhead to the creation of MAM
environment from individual allocations. Even though the
initialization of MAM is slow, once it is initialized, there
is no significant overhead caused by memory allocations or
deallocations. Because, there is no physical memory allocation
after the creation of MAM and the allocation size has no effect
on the complexity of MAM.

The second performance measurement is based on the total
number of existing segments during allocation or deallocation.
This is meaningful because the size of data structures used
in the MAM environment increases with the number of
segments. In order to measure the performance in terms of
the number of previously allocated segments, we measured the
time elapsed during the first allocation after allocated variable
number of segments. In this measurement, the allocation size
was random between 1Byte to 10Bytes, sufficiently small so
that we could make large number of allocations up to 107

before the device memory is full. Figure 10 shows the per-
formance comparison between regular cudaMalloc() and
MAM_CudaMalloc() in terms of the number of previously
allocated segments.

According to this performance measurement, MAM is faster
than CUDA and the duration of MAM allocation increases
more slowly than actual CUDA allocation for the number
of previously allocated segments larger than 100. This is
the result of the fact that allocation algorithm of MAM is
O(log n), since the red-black tree used in MAM environment
is a balanced tree.

We should also mention that when the programmer makes
a very large number of small device memory allocations,

Fig. 10. cudaMalloc() vs MAM_CudaMalloc() comparison according
to number of previous allocations

MAM uses lots of host memory, since a segment struct
instance is created for each segment.

VI. DISCUSSION & RELATED WORK

This study only covers the performance comparison of
MAM with CUDA device memory management. However,
MAM is completely applicable to any other environment that
involves allocation and deallocation of a contiguous space of
any kind, such as pinned memory allocation of CUDA [7] or
host memory allocation. MAM will work exactly the same way
with any of these environments since it does not depend on
the actual, or physical allocation procedure once it is created.

In the literature, there is a group that also focusses on
GPU memory alloation and deallocation overhead [10]. They
compare current GPU memory allocators and propse a new
one that is register efficient. There are a lot of studies [7],
[9], [8] about GPU memory management, mainly focusing
on reducing data transfer overhead between the host and
device memory. A study deals with the effective usage of
relatively small GPU memory by using it as a cache for the
host memory and transferring data between the two memories
during runtime [3]. A second study that also focuses on small
device memory size decreases data transfer overhead between
device and host memory by directly connecting a Solid State
Disk (SSD) to a GPU [4]. A group has developed a tool to
manage device memory so that multiple applications can use
the GPU without any problems [5]. Another study integrated
GPU as a first-class resource to the operating system [6].

To our knowledge, there is no study focusing specifically
on solving GPU memory allocation overhead. Programmers
generally write their own memory manager for their specific
application when it is needed. MAM offers a generalized
solution, is independent of an applications, and provides
efficient data structures to keep the overhead low.

VII. CONCLUSION

In this study, we focused on reducing the memory allocation
overhead in GPUs and we developed MAM, which is a library

for CUDA. This library abstracts the CUDA memory manage-
ment module from the program and succeeds to remove the
overhead by moving all the overhead to the beginning of the
program. MAM currently offers a solution for the memory
allocation problem of CUDA but it can be easily extended
to be used in other platforms. Our future work will extend
this work to Intel Xeon Phi architectures and other GPU
programming models.

REFERENCES

[1] ”CUDA Toolkit”, NVIDIA Developer, 2017. [Online]. Available:
https://developer.nvidia.com/cuda-toolkit. [Accessed: 10- Jul- 2017].

[2] CUDA Memory Management Overhead. [Online]. Available:
https://www.cs.virginia.edu/ mwb7w/cuda support/memory management overhead.html.
[Accessed: 14-Oct-2016].

[3] Y. Kim, J. Lee, and J. Kim, ”GPUdmm: A high-performance and mem-
oryoblivious GPU architecture using dynamic memory management,” in
Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb.
2014, pp. 546-557.

[4] J. Zhang, D. Donofrio, J. Shalf, M. Kandemir, and M. Jung. Nvmmu:
A non-volatile memory management unit for heterogeneous gpu-ssd
architectures. PACT 2015, 2015.

[5] K. Wang, X. Ding, R. Lee, S. Kato, and X. Zhang, ”Gdm: Device
memory management for gpgpu computing,” in The 2014 ACM Interna-
tional Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS, (New York, NY, USA), pp. 533-545, ACM, 2014.

[6] S. Kato, M. McThrow, C. Maltzahn, and S. A. Brandt. Gdev: First-class
gpu resource management in the operating system. In USENIX Annual
Technical Conference, 2012.

[7] B. Bastem, D. Unat, W. Zhang, A. Almgren, and J. Shalf. Overlapping
Data Transfers with Computation on GPU with Tiles, The 46th Interna-
tional Conference on Parallel Processing, ICPP 2017

[8] Mehmet E. Belviranli, Farzad Khorasani, Laxmi N. Bhuyan, and Rajiv
Gupta. 2016. CuMAS: Data Transfer Aware Multi-Application Schedul-
ing for Shared GPUs. In Proceedings of the 2016 International Conference
on Supercomputing (ICS ’16). ACM, New York, NY, USA, Article 31,
12 pages.

[9] T. Gysi, J. Bar and T. Hoefler, dCUDA: Hardware Supported Overlap
of Computation and Communication, SC16: International Conference for
High Performance Computing, Networking, Storage and Analysis, Salt
Lake City, UT, 2016, pp. 609-620.

[10] M. Vinkler and V. Havran, ”Register Efficient Dynamic Memory Allo-
cator for GPUs”, Computer Graphics Forum, vol. 34, no. 8, pp. 143-154,
2015.

